

Unraveling and Demystifying the SDGs

The Quest

June 16, 2022 Bamini Jayabalasingham and Tahseen Afroz Khanday

SUSTAINABLE G ALS

Why is Mapping Research to the SDGs A Quest? SDGs capture language of needs and impact

Conserve and sustainably use the oceans, seas and marine resources

Why is Mapping Research to the SDGs a Quest? Actions use industry language

Patents

Process for conversion of organic, waste, or low-value materials into useful products

MAYA Holding ... First filing in family 11/17/2003 First publication in family 9/29/2004

The present invention addresses the processing of waste and lowvalue products to produce useful materials in reliable purities and compositions, at acceptable cost, without producing malodorous

Bioretention system and method

SUSTAINABLE WATER INFRA...First filing in family 4/15/2009 First publication in family 10/21/2009

A bioretention system and method are provided for removing phosphorus, nitrogen and other materials from effluent such as wastewater and stormwater. The system and method can include a filtration media comprising water treatment residuals and other fill such as soil. Plants can be growing in the soil. The system can also include a drainage

Research

A tradeoff between physical encounters and consumption determines an optimal droplet size for microbial degradation of dispersed oil

Vicente I. Fernandez¹, Roman Stocker^{1⊠} & Gabriel Juarez^{2⊠}

Termination of the 2018 Florida red tide event: A tracer model perspective

Yonggang Liu ª 🎗 🖾, Robert H. Weisberg ª, Lianyuan Zheng ª, Cynthia A. Heil ^b, Katherine A. Hubbard ^c

Step 2: Build queries

Step 2: Build queries. Evaluate the terms based on results

Metrics	0.00 %	240119	•0.00 % 100.00 %	Loaded project:				
	Carbon Capture						X	
	Show 10 🗸	Search here :)	A					
	Show 1 to 10 of	100 entries			First Previo	evious 1 2 3 4 Next		
	ID	Title	Keywords	Abstract	Journal title	Rating		
	filter filter		filter	lter filter			filter	
	2-s2.0- 9244221615	Greenhouse gas growth rates	Methane, Priority Journal, Article, Fossil Fuels, Trace Element, Greenhouse Effect, Atmospheric Dispersion, Carbon Dioxide, Controlled Study, Climate Change, Global Climate, Greenhouse Gas, Growth Rate, Nitrous Oxide, Air	We posit that feasible reversal of the growth of atmo- and other trace gases would provide a vital contribu- averting dangerous anthropogenic interference w climate. Such trace gas reductions may allow stab atmospheric CO2 at an achievable level of anthropo- emissions, even if the added global warming cor dangerous anthropogenic interference is as small as	spheric CH4 tion toward ith global ilization of oggenic CO2 istituting 5 1°C. A 1°C	Proceedings of the National Academy of Sciences of the United States of America		
	2-s2.0- 9344267135	Compressed air storage-gas turbines-power plants to balance fluctuating wind energy production	NA	can also supply surplus energy. The result is less use and fewer CO2 emissions. The coastal regions w amounts of wind energy and numerous salt formatic for compressed air storage facilities are especially locations. CAES power plants reduce the cost of ele wind energy under consideration of all cost fact discussion covers the need for compressed air stora of the increased use of wind energy in constraints.	e of fossil fuel ith large ons suitable attractive ctricity from ors. The ge because such as	DGMK Tagungsbericht		

Step 2: Build queries. Evaluate the terms based on results

Metrics	♦ 16.00 %	ن م 0.00 %	100.00 % Loaded project:		
	Carbon Capture				x
	Show 10 V C	50 # of door: 4000	Recall function.	Search here :)	
	Show 1 to 10 of 280 entries	# 01 docs. 1000		First Previous	s 1 2 3 4 Next Last
	Keyword Term frequency		Update recall function!	tfidf	
	filter	filter	L i filter	filt	er

Step 2: Build queries. Evaluate the terms based on results

Carbon Capture			X
	QUERY	CALL FUNCTION	
Show 10 v C sample	WHEN YOU RE	ACH 90%	Search here :)
Show 1 to 10 of 94 entries	PRECISION AND	80% RECALL	evious 1 2 3 4 Next Last
Keyword			tfidf
filter	Sile P		filter
TEMPERATE GRASSLAND			23.49831397824485
ELEVATED CO2			22.375106745878057
CARBON SEQUESTRATION			18.238848483209672
C SEQUESTRATION	- 134 · · ·		17.347948528249397
MANAGEMENT PRACTICES	Succession in the	And Address of Contraction of the	14.172260196877659
SIMULATION MODELLING.		AND AND A DECIMAL OF A	13.386514952445916
C SEQUESTRATION RATE		ALL	12.89921982609012
CARBON SEQUESTER	IT'S OVER I		12.121643965913384
INCREASING CO2 CONCENTRATION	com A statistical de la com		12.087231968315654
ECOSYSTEMS	2	74685	11.894854712273407

Elsevier BV

Improving the Scopus and Aurora queries to identify research that supports the United Nations Sustainable Development Goals (SDGs) 2021

Published: 26 August 2021 | Version 4 | DOI: 10.17632/9sxdykm8s4.4 Contributors: Maxime Rivest, Yury Kashnitsky, Alexandre Bédard-Vallée, David Campbell, Paul Khayat, Isabelle Labrosse, Henrique Pinheiro, Simon Provençal, Guillaume Roberge, Chris James

Download All 29 MB (i)

Files

SDG Machine Learning Methodology & Samples

SDG Query and Methodology

Evaluating the SDG Queries

→ Analysis showing the overlap between four different queries for SDG 13

→ No more than 25% of commor publications for the different queries related to a given SDG

Figure 2. Number of overlapping and surplus publications between methods

A comparison of different methods of identifying publications related to the United Nations Sustainable Development Goals: Case Study of SDG 13: Climate Action. Philip James Purnell <u>https://doi.org/10.48550/arXiv.2201.02006</u>

World output in the SDGs

Step 3: Continue to evaluate with diverse gold sets

Montreal-based research analysts

manual review of publications based on defined inclusion/exclusion criteria.
9,500 publications

Western European university researchers

- Survey data from 244 researchers from different universities in Europe and US filled in a survey.
- 6,741 publications

Science-Metrix

Chilean researchers; self assessment.

- Self-assessment of publications my university researchers at Pontificia Universidad Católica (PUC) based in Chile
- 1,200 publications

Solution 3: Build and collect gold sets to test precision

Crowd source a gold set

Resources Research News Events Partners Links

Help identify research that advances the SDGs

Show previous page

Advancing the 17 sustainable development goals (SDGs) is vital to the success of the United Nations' 2030 Agenda for Sustainable Development. Research and funding institutions have a vital supportive role in this historic task. Here, individual researchers like you can also play a part by helping to identify publications relevant to each SDG.

Why it is important to identify relevant publications

This task will show which of the SDGs are supported by a strong body of research and ensure this knowledge is available for reference. It will also highlight any gaps in the knowledge base, helping inform decisions about future lines of investigation.

How you can help

Help us qualify relevance based on a given publication's relationship to the SDG indicators, which were developed by the Inter-Agency and Expert Group on SDG Indicators (IAEG-SDGs) as a way of showing progress towards a target. Here's how:

researcher policy support										citizen												
0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
									Numb	er of s	ubmis	sions										

Learnings for a way forward

- SDG queries and results are subjective by nature
- Continued development involves diversifying the gold set to further refine queries
- Machine learning can increase recall

SDG queries provide a toolkit for customization depending on needs

Case study 1: Defining Engineering's role in addressing Climate Change

> "Research aimed at mitigating climate change or its impacts"

Climate Science Themes included

4 LIFE BELOW WATER

- Sustainably enhancing food and agricultural productive capacity to meet climate change challenges
- Reliable, efficient, clean, and renewable energy
- Clean and environmentally sound technologies and industrial processes, and increasing their use
- Sustainable transportation, settlement planning, and urbanization
- Reduction of the environmental impact of cities
- Mitigation of effects caused by natural disasters
- Oceanic changes and their causes and effects
- Environmental changes (e.g. deforestation, desertification) and their causes and consequences
- Conserving and sustainably using biodiversity and the ecosystem

~4,000,000 publications

Climate Science Clusters

- 1. Materials for solar power
- 2. Next-generation manufacturing
- 3. Clean energy and the smart grid
- 4. Biofuels
- 5. Energy storage
- 6. Resilience to climate change
- 7. Climate change and the ecosystem
- 8. Cities of tomorrow and sustainable industries
- 9. Carbon capture
- 10. Climate change and agriculture
- 11. Climate change and aquatic ecosystems
- 12. Pollution and bioremediation
- 13. Fusion power

Issues in Climate Change: Identifying the Relevant Research

Solar & Renewable Energy

Energy Storage

Carbon Sequestration & GHG Capture

Decarbonizing Industries

Ecosystems & Agriculture

Resilient Infrastructure, Buildings and Transportation

Geoengineering

Health & Climate Change

Distribution of Research Across Climate Issues

Global research, 2001-2020

Leading Contributors to Climate Change Research: *Contributions by Region*

Research literature from 2001-2020

- Regions leading in contributions to the literature: EU, United States, China
- Regions with highest percent of entire research portfolio focused on climate change research: China, India, Australia, Brazil

Leading Contributors to Climate Change Research: Changes Over Time

Defining Engineering Research:

Research from 1996 to 2021 was categorized as Engineering research based on:

- 1. the journal it was published in, which captured approximately 20,0000,000 documents, and
- 2. a machine learning approach to capture publications from multidisciplinary journals such as *Nature* and *Science*, which captured more than 2,000,000 additional documents.

Representation of Engineering in Research Across Climate Change Issues

Distribution of Climate Change Research: Engineering Approach

Engineering research represents 65% of climate change research globally with variations across regions:

- 57% of climate change research in the US
- 78% of climate change research in China

Research literature from 2010-2019, categorized as engineering or not engineering.

Case Study 2: Carbon Capture

						1		1	1			
node		queries										
	1	("methan	e") and ("e	mission" o	or "emissio	ns") and ('	agriculture	e" or "agro	" or "agricu	ultural")		
	2	("methane") and ("emission" or "emissions") and ("livestock" or "livestocks")										
	3 ("fossil fuels" or "fossil fuel") and ("emission" or "emissions")											
	4	"industry carbon dioxide emission"										
	"industry CO2 emission"											
	1	"industry	CO 2 emis	sion"								
	1	"industry	GHG emiss	sion"								
	1	"industry	green gas	emission"								
		"industry	green hou	se gas emi	ssion"							
	"industry greenhouse gas emission"											
		"industry greenhousegas emission"or "industry carbon dioxide emissions"										
		"industry	CO2 emiss	ions"								
		"industry	CO 2 emiss	sions"								
		"industry	GHG emiss	sions"								
		"industry	green gas	emissions'								
		"industry	green hou	se gas emi	ssions"							
		"industry	greenhous	se gas emis								
		"industry	greenhous	segas emis	sions"or "i	ndustrial c	arbon diox	ide emissi	on"			
		"industria	l CO2 emis	ssion"								
	1	"industria	l CO 2 emi	ssion"								

Deep Dive Analysis – Carbon Capture (part of SDG 13)

Over 236K documents captured starting 1922 onwards globally

Total Publication
50163
35801
20201
16684
13238
11732
11450
11115
10285
8939

Global Publication Trend

Publication Trend in Canada

Publications from 1952 captured in Scopus for Canada

Carbon Capture - Canada

Funding Sponsor	Count
Natural Sciences and Engineering Research Council of Canada	1899
National Natural Science Foundation of China	439
National Science Foundation	337
European Commission	218
Natural Resources Canada	207
Natural Environment Research Council	176
Agriculture and Agri-Food Canada	175
Social Sciences and Humanities Research Council of Canada	170
U.S. Department of Energy	162
UK Research and Innovation	162
Canada Foundation for Innovation	143
Canada Research Chairs	127
Mitacs	121
National Key Research and Development Program of China	117

Carbon Capture – Canada (2016 to 2021)

5,177	19,529	1.80
Scholarly Output ①	Authors	Field-Weighted Citation Impact ①
39.4% All Open Access		Yearly breakdown
97,780	18.9	
Citation Count ①	Citations per Publication ①	

Collaboration **•**

Scholarly Output in Carbon Capture, by amount of international, national and institutional collaboration

Metric		Scholarly Output	Citations	Citations per Publication	Field-Weighted Citation Impact
International collaboration	56.7%	2,935	70,414	24.0	2.27
Only national collaboration	14.9%	772	8,979	11.6	1.17
Only institutional collaboration	24.1%	1,248	16,479	13.2	1.19
Single authorship (no collaboration)	4.3%	222	1,908	8.6	1.35

Key Research Phrases

Focus Topics in Canada for Carbon Change

Between 2016 to 2021, Canada contributed to Carbon Capture across:

- 395 Topic Clusters
- 1,370 Topics

Topics

Topics & Topic Clusters © Metric guidance + Add to Reporting Export Between 2016 to 2021, Carbon Capture has contributed to: 395 Topic Clusters 1,370 Topics 🗄 Table ⊘ Wheel 🕸 Scatter All Topics ✓ Search 🗟 Add to panel 🔠 Create Research Area 💿 Analyze as Group in Grants 📈 Prominence percentile over time In this Publication Set Worldwide Scholarly 🗸 Publication Field-Weighted Topic Output Share Citation Impact Prominence percentile Greenhouse Gas; Nitrification Inhibitors; Soil Emission 121 5.20% 1.31 99.236 T.628 Integrated Assessment Model; Carbon; Global Temperature Increase 119 3.29% 2.97 99.820 T.3285 Carbon Dioxide; Methane Emission; Fens 93 5.8996 1.41 98.630 T.1385

Topic preview (worldwide) X Greenhouse Gas; Nitrification Inhibitors; Soil Emission T.628	Publications Within: Greenhouse Gas; M		× Export ∨					
2,325 publications (2016 to 2021)	Authors	Authors 🗡 121 publications 🕞 Save as Publication Set						
	Institutions	~	Title	Authors	Year	Scopus Source	Citations	 ✓ ✓
Most cited publications	Publication years	~	Global soil nitrous oxide emissions since the	Tian, H., Yang, I., Xu, R. and 21 more	2019	Global Change Biology		118
Pursuing sustainable productivity with millions of smallholder farmers.	Open Access 🕦	~	preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude,			<i>w w</i>		
Cui, Z., Zhang, H., Chen, X. and 43 more (2018)	Author numbers	~	attribution, and uncertainty Open Access					
Greenhouse gas emissions from soils—A review. Oertel, C., Matschullat, L., Zurba, K.,	Countries/Regions	~	> View abstract View in Scopus #					
and 2 more (2016)	Publication types	~	Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-	Congreves, K.A., Wagner-Riddle, C., Si, B.C. and 1 more	2018	Soil Biology and Biochemistry		85
A comprehensive quantification of global nitrous oxide sources and sinks.	Publication stage	~	Open Access					
Tian, H., Xu, R., Canadell, J.G. and 54 more (2020)	Scopus Sources	~	> View abstract View in Scopus #					
Liming impacts on soils, crops and biodiversity in the UK: A review.	Subject Areas	~	A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA	Goglio, P., Smith, W.N., Grant, B.B. and 9 more	2018	Journal of Cleaner Production		53
Holland, J.E., Bennett, A.E., Newton, A.C. and 7 more (2018)	Institution Numbers	~	Open Access View abstract View in Scopus #					
The role of nitrifier denitrification in the production of nitrous oxide revisited.			Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification	Dai, Z., Yu, M., Chen, H. and 8 more	2020	Global Change Biology		51
Wrage-Mönnig, N., Horn, M.A., Well, R. and 3 more (2018)			Open Access					
			/ view aboutable view in Scopus /					

Top Contributing Institutes in Canada

Institution	Scholarly Output	Citations per Publication	Field-Weighted Citation Impact
University of British Columbia	460	20.3	1.76
University of Alberta	433	20.4	1.91
University of Toronto	408	26.5	2.29
University of Waterloo	308	18.5	1.55
Agriculture and Agri-Food Canada	286	16.9	1.58
McGill University	270	19.8	1.6
University of Calgary	251	9.8	1.17
Environment and Climate Change Canada	207	47	4.34
University of Guelph	200	20.8	1.74
University of Montreal	198	16.1	1.93
Natural Resources Canada	197	14.9	1.65
Ontario Tech University	169	19.4	2.07
Université du Québec à Montréal	166	28.6	2.76
University of Saskatchewan	156	16	1.69
Université Laval	154	13	1.63

Top Contributing Authors in Canada

						ELSE
Name	Scholarly Output	Institute	Citations	Citations per Publicati on	Field- Weighted Citation Impact	h-index
Dincer, Ibrahim	91	Ontario Tech University	2026	22.3	2.29	106
Kumar, Amit	65	University of Alberta	1568	24.1	1.52	43
Huang, Gordon	63	University of Regina	1208	19.2	1.52	77
Peng, Changhui	56	Université du Québec à Montréal	2109	37.7	3.24	71
Rosen, Marc A.	44	Ontario Tech University	1273	28.9	2.92	87
Wagner-Riddle, Claudia	43	Agriculture and Agri-Food Canada	644	15	1.31	38
Beauchemin, Karen Anne Beauchemin	43	Lethbridge Research and Development Centre	714	16.6	2	71
Elkamel, Ali	41	University of Waterloo	328	8	0.71	44
Chang, Scott X.	41	University of Alberta	734	17.9	2.02	54
VanderZaag, A. C.	39	Agriculture and Agri-Food Canada	425	10.9	0.97	23
Fowler, Michael W.	39	University of Waterloo	724	18.6	1.51	56
MacLean, Heather L.	38	University of Toronto	612	16.1	1.48	38
Bergerson, Joule A.	35	University of Calgary	316	9	0.92	20
Sadiq, Rehan	33	The University of British Columbia	591	17.9	1.17	55
Hewage, Kasun N.	33	The University of British Columbia	591	17.9	1.17	36

Publication Analysis

Scopus Source	Publications	CiteScore 2020
Journal of Cleaner Production	182	13.1
Science of the Total Environment	90	10.5
Applied Energy	86	17.6
Renewable and Sustainable Energy Reviews	79	30.5
Energy	75	11.5
Environmental Research Letters	75	8.6
Sustainability	64	3.9
Environmental Science & Technology	58	13.8
Global Change Biology	57	15.5
International Journal of Hydrogen Energy	54	9

Conclusions

- SDG query development is a subjective exercise.
- Continued development can help make the queries reflect more perspectives.
- Subqueries provide a toolkit for zooming out and zooming in on particular areas of interest.

Thank you

b.jayabalasingham@elsevier.com t.afroz@elsevier.com

